A test of microtubule translocation during neurite elongation

نویسندگان

  • S S Lim
  • K J Edson
  • P C Letourneau
  • G G Borisy
چکیده

In a previous study using PC-12 cells (Lim, S. S., P. J. Sammak, and G. G. Borisy, 1989. J. Cell Biol. 109:253-263), we presented evidence that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary. However, neurites of PC-12 cells grow slowly, hindering a stringent test of slow axonal transport mechanisms under conditions where growth was substantial. We therefore extended our studies to primary cultures of dorsal root ganglion cells where the rate of neurite outgrowth is rapid. Cells were microinjected with X-rhodamine-labeled tubulin 7-16 h after plating. After a further incubation for 6-18 h, the cells were photobleached with an argon ion laser. Using a cooled charged couple device and video microscopy, the cells were monitored for growth of the neurite and movement and recovery of fluorescence in the bleached zone. As for PC-12 cells, all bleached zones in the neurite recovered their fluorescence, indicating that incorporation of tubulin occurred along the neurite. Despite increases in neurite length of up to 70 microns, and periods of observation of up to 5 h, no movement of bleached zones was observed. We conclude that neurite elongation cannot be accounted for by the transport of a microtubule network assembled only at the cell body. Rather, microtubules turn over all along the length of the neurite and neurite elongation occurs by net assembly at the tip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Cone MKK7 mRNA Targeting Regulates MAP1b-Dependent Microtubule Bundling to Control Neurite Elongation

Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where...

متن کامل

Drosophila Growth Cones Advance by Forward Translocation of the Neuronal Cytoskeletal Meshwork In Vivo

In vitro studies conducted in Aplysia and chick sensory neurons indicate that in addition to microtubule assembly, long microtubules in the C-domain of the growth cone move forward as a coherent bundle during axonal elongation. Nonetheless, whether this mode of microtubule translocation contributes to growth cone motility in vivo is unknown. To address this question, we turned to the model syst...

متن کامل

Microtubule-Associated Type II Protein Kinase A Is Important for Neurite Elongation

Neuritogenesis is a process through which neurons generate their widespread axon and dendrites. The microtubule cytoskeleton plays crucial roles throughout neuritogenesis. Our previous study indicated that the amount of type II protein kinase A (PKA) on microtubules significantly increased upon neuronal differentiation and neuritogenesis. While the overall pool of PKA has been shown to particip...

متن کامل

JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length

c-Jun NH(2)-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizin...

متن کامل

Eg5 Causes Elongation of Meiotic Spindles When Flux-Associated Microtubule Depolymerization Is Blocked

In higher eukaryotes, microtubules (MT) in both halves of the mitotic spindle translocate continuously away from the midzone in a phenomenon called poleward microtubule flux. Because the spindle maintains constant length and microtubule density, this microtubule translocation must somehow be coupled to net MT depolymerization at spindle poles. The molecular mechanisms underlying both flux-assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990